Los determinantes fueron introducidos en Occidente a partir del siglo XVI, esto es, antes que las matrices, que no aparecieron hasta el siglo XIX. Conviene recordar que los chinos (Hui, Liu. Jiu3zhang1Suan4shu4 o Los nueve capítulos del arte matemático.) fueron los primeros en utilizar la tabla de ceros y en aplicar un algoritmo que, desde el Siglo XIX, se conoce con el nombre de Eliminación de Gauss-Jordan.
Los determinantes hicieron su aparición en las matemáticas más de un siglo antes que las matrices. El término matriz fue creado por James Joseph Sylvester, tratando de dar a entender que era “la madre de los determinantes”.
El concepto de determinante de una matriz cuadrada tiene una gran relevancia dentro de la teoría de
matrices. Los determinantes resultan de gran utilidad a la hora de resolver determinados sistemas de
ecuaciones lineales (los llamados sistemas de Cramer), discutir la existencia de solución de sistemas
de ecuaciones lineales generales (mediante el concepto de rango de una matriz y del Teorema de
Rouché Frobenious), y analizar la dependencia lineal de un conjunto de vectores (lo cual, entre otras
cosas, nos permitirá identificar posibles bases de un espacio vectorial). Además, la interpretación
geométrica de los determinantes nos permite calcular, de forma sencilla, áreas y volúmenes de
determinadas figuras geométricas, realizar productos vectoriales, y hallar las ecuaciones de un plano en el espacio.
Para obtener los apuntes del tema pincha aquí.